Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 20(4): 1395-1402, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29394318

RESUMO

In the establishment and maintenance of the interaction between pathogenic or symbiotic bacteria with a eukaryotic organism, protein substrates of specialized bacterial secretion systems called effectors play a critical role once translocated into the host cell. Proteins are also secreted to the extracellular medium by free-living bacteria or directly injected into other competing organisms to hinder or kill. In this work, we explore an approach based on the evolutionary dependence that most of the effectors maintain with their specific secretion system that analyzes the co-occurrence of any orthologous protein group and their corresponding secretion system across multiple genomes. We compared and complemented our methodology with sequence-based machine learning prediction tools for the type III, IV and VI secretion systems. Finally, we provide the predictive results for the three secretion systems in 1606 complete genomes at http://www.iib.unsam.edu.ar/orgsissec/.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Proteínas de Bactérias/classificação , Sistemas de Secreção Bacterianos/classificação , Biologia Computacional , Genoma Bacteriano , Aprendizado de Máquina , Cadeias de Markov , Mesorhizobium/genética , Mesorhizobium/metabolismo , Modelos Genéticos , Filogenia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo
2.
Front Plant Sci ; 9: 1686, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515183

RESUMO

Mesorhizobium loti MAFF303099 is a rhizobial strain that nodulates Lotus spp. A M. loti MAFF303099 mutant strain affected in the tatC gene was generated. This strain presented an altered protein secretion level to the culture supernatant and also a higher sensitivity to SDS. Its nodulation phenotype on Lotus showed the induction of small and colorless nodules, and in a larger number than those induced by the wild-type strain. In addition, these nodules presented defects in the degree of occupation by rhizobia. Two Rieske Fe/S proteins, encoded by the mll2707 and mlr0970 genes, were predicted as potential Tat substrates in M. loti MAFF303099. The transcriptional expression of mll2707 and mlr0970 genes was analyzed under different oxygen growth conditions. The mll2707 gene was expressed constitutively, while the expression of the mlr0970 gene was only detected under anaerobic and microaerophilic in vitro conditions. Both genes were down-regulated in the tatC mutant strain. mll2707 and mlr0970 mRNAs from the wild-type strain were detected in nodules. Using a translational reporter peptide fusion, we found that the Mll2707 protein was only detectable in the wild-type strain. On the other hand, although Mlr0970 protein was detected in wild-type and tatC mutant strains, its association with the membrane was favored in the wild-type strain. The tatC and the mll2707 mutant strains were affected in the cytochrome c oxidase activity. These results confirm that Mll2707 is required for cytochrome c-dependent respiration and that Tat functionality is required for the correct activity of Mll2707. The mll2707 mutant strain showed a nodulation phenotype similar to the tatC mutant strain, although it presented only a slight difference in comparison with wild-type strain in terms of nodule occupation. No defective phenotype was observed in the nodulation with the mlr0970 mutant strain. These results indicate that, of the two Rieske Fe/S proteins coded by M. loti MAFF303099, only Mll2707 expression is required for the induction of effective nodules, and that the functionality of the Tat system is necessary not only for the correct function of this protein, but also for some other protein required in an earlier stage of the nodulation process.

3.
FEMS Microbiol Lett ; 363(19)2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664056

RESUMO

Mesorhizobium loti MAFF303099 has a functional Type III secretion system (T3SS) that is involved in the determination of competitiveness for legume nodulation. Here we demonstrate that the transcriptional factor TtsI, which positively regulates T3SS genes expression, is involved in a negative regulation of M. loti swimming motility in soft-agar. Conditions that induce T3SS expression affect flagella production. The same conditions also affect promoter activity of M. loti visN gene, a homolog to the positive regulator of flagellar genes that has been described in other rhizobia. Defects in T3SS complex assembly at membranes limited the negative regulation of motility by the expression of TtsI.

4.
Front Plant Sci ; 6: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25688250

RESUMO

Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...